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Invalidity of continuum theories of electrolytes in nanopores
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Abstract

Continuum theories of electrolytes are widely used to describe physical processes in various biological systems, even
when the system dimensions are comparable to the Debye length. We test the validity of the mean field approximation in
Poisson–Boltzmann and Poisson–Nernst–Planck theories by contrasting their predictions with those of Brownian dynamics
simulations in cylindrical pores of varying radius. We find that both continuum theories largely overestimate shielding
effects when the pore radius is smaller than two Debye lengths, and, therefore, they cannot be used to describe the physics of
electrolytes in nanopores. q 2000 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

During the last few decades, continuum theories
of electrolytes have found a new niche in the de-
scription of physical processes that take place in the

w xsalty waters of cells 1–4 . Many of these applica-
tions involve membranes, proteins and other macro-
molecules – systems whose dimensions are much
larger than the Debye length of ions so that the
validity of the underlying mean field approximation
does not come into question. There is also a growing
field of applications of continuum theories in ion
channels – nanopores formed by proteins across
biological membranes that provide pathways for ion

w x Ž .flow 5 . For example, the Poisson–Boltzmann PB
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equation is used to calculate the potential energy
Žprofile of ions in equilibrium situations e.g. Refs.

w x .6–9 , and references therein , while the Poisson–
Ž .Nernst–Planck PNP equations are employed to cal-

Žculate ion flux across membrane channels e.g. Refs.
w x .10–13 , and references therein . Considering that
complete screening of an ion’s charge occurs at
about 4 Debye lengths in a bulk solution, and at

Ž .physiological concentrations 0.15 M the Debye
˚length is 8 A, it is not clear how these continuum

theories could be applied to narrow cylindrical pores
whose diameters are less than 1 or 2 Debye lengths.
So far there have been no systematic studies of the
continuum theories to check their validity in
nanopores, and in the face of the rapid growth of
their applications in ion channels, it seems impera-
tive that such a study should be carried out as a
matter of urgency. Here, we test the validity of the
mean field approximation in PB and PNP theories by
comparing their predictions for various physical
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quantities with those obtained from Brownian dy-
Ž .namics BD simulations in otherwise identical situa-

tions. BD is suitable for this purpose because the
motion of all the ions in a given system are traced
individually according to the Langevin equation.
Hence, a long-time average of physical quantities
should accurately reflect the actual physical be-
haviour of the system.

2. Continuum theories and Brownian dynamics

The PB theory provides a classical electrostatic
description of a system in which fixed external and
boundary charges, represented by a density r , areex

surrounded by mobile ions in a dielectric medium.
The main assumption of the theory is that at equilib-
rium, the distribution of the mobile ions in the
system can be approximated by a continuous number
density given by the Boltzmann factor

n sn exp yz efrkT , 1Ž . Ž .n n 0 n

Ž .where n is the bulk or reference number densityn 0

of ions of species n , z e is their charge and f is then

potential. Upon feeding this density into Poisson’s
equation

e =P e=f sy z en yr , 2Ž . Ž .Ý0 n n ex
n

one obtains the PB equation

e =P e=f sy z en exp yz efrkTŽ . Ž .Ý0 n n 0 n

n

yr . 3Ž .ex

Ž .For a given boundary, Eq. 3 is solved numerically
w xusing a standard finite difference algorithm 2,3 ,

which yields the potential and concentration profiles
of ions everywhere in the system. In the following,
we use concentration of ions c instead of n , whichn n

Ž . 3 Ž .are related by n SI units s10 N c molrl .n A n

A corresponding continuum description of flux Jn

due to an ion species n is provided by the Nernst–
Planck equation, which combines the diffusion due
to a concentration gradient with that from a potential
gradient

z enn n
J syD =n q =f , 4Ž .n n nž /kT

where D is the diffusion coefficient of ion speciesn

Ž .n . The potential f in Eq. 4 is determined from the
Ž . Ž .solution of Poisson’s Eq. 2 . The PNP Eqs. 2 and

Ž .4 are solved simultaneously using a finite differ-
w xence algorithm similar to the PB case 12 , yielding

the potential, concentration and flux of ions in the
system.

In continuum theories, ion concentration and flux
are described by continuous quantities that represent
the macroscopic, space–time averages of micro-
scopic motion of individual ions. Whether this as-
sumption is still valid when the system size is com-
parable to the Debye length can be tested directly by
performing BD simulations in identical systems, and
computing the ion concentration and flux from the
time-average of ionic motions. In BD, the trajectory
of each ion in the system is followed using the
Langevin equation

dzi
m sym g z qF qz eE qF , 5Ž .i i i i R i i Sd t

where m , z e and z are the mass, charge andi i i
Ž .velocity of the ith ion. In Eq. 5 , the effect of the

water molecules is represented by an average fric-
tional force with a friction coefficient m g skTrD ,i i i

and a stochastic force F arising from random colli-R
Ž .sions. The fourth term in Eq. 5 is the total electric

force acting on the ion due to other ions, fixed and
induced surface charges in the boundary, and the
applied electric field. It is computed by solving

Ž .Poisson’s Eq. 2 using the usual boundary condi-
tions, that is, E =nsE =n and e E Pnse Eˆ ˆ ˆ1 2 1 1 2 2

Pn, where the indices 1 and 2 refer to inside andˆ
outside the boundary. The iterative numerical method
employed for this purpose is detailed elsewhere
w x14,15 . Rather than solving Poisson’s equation at
each time step, which would be computationally

w xprohibitive, a system of lookup tables is used 16 .
The electric field and potential due to one- and
two-ion configurations are precalculated at a number
of grid points and stored in a set of tables. During
simulations, the potential and field at desired points
are reconstructed by interpolating between the table
entries and using the superposition principle. The last

Ž .term in Eq. 5 describes the short-range part of the
wŽ . x9ion–ion potential using the standard R qR rr1 2 12

form, which emulates the hard-sphere collisions
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in the primitive model quite well. The radius
of the colliding ions are taken as R s0.95 andNa

˚R s1.81 A. The ions are elastically scattered fromCl

the channel and reservoir boundaries when they come
Ž .into contact with them. The Langevin Eq. 5 is

Ž .solved at discrete time steps D ts100 fs following
w xthe algorithm in Ref. 17 . For further technical

details of BD simulations, we refer to Refs.
w x16,18,19 . Throughout, bulk values of the diffusion
coefficients are employed in all theories, i.e. D sNa

1.33=10y9 and D s2.03=10y9 m2rs.Cl

3. Tests of continuum theories

We have performed a number of control studies to
ensure that the results obtained from the solution of
PB and PNP equations are in agreement with those
obtained from the BD simulations under bulk condi-
tions. Details of these studies will be published in a
longer article. Here we report the results of tests of
continuum theories in nanopores with dimensions
typical of ion channels – the total length of the

˚cylindrical pore is 35 A and its radius is varied from
˚ Ž .rs3 to 13 A see the top of Fig. 1 . The corners of

the cylinder are rounded with a radius of curvature 5
Å to avoid difficulties in numerical solutions of
Poisson’s equation with sharp corners. Reservoirs

˚with a radius of 30 A and are attached on either side
˚of the pore. The height of the reservoirs is 25 A for a

˚rs3 A pore, which is progressively reduced for
larger radii to keep the volume fixed. The dielectric

Ž .constant is es80 inside the boundary water and
es2 outside, which is representative of proteins
forming ion channels. A NaCl solution with an
average concentration of 0.3 M is used in the com-
parisons, represented by a total of 24 Naq and 24
Cly ions in BD simulations. The reason for using
this higher value instead of the more typical 0.15 M
is entirely statistical; twice as many ions leads to a
better accuracy in BD simulations. The results, once
expressed in terms of the Debye length, are more or
less independent of the concentration used. We note

˚that the Debye lengths are 7.9 and 5.6 A, respec-
tively, for 0.15 and 0.3 M solutions.

3.1. PB theory Õersus BD

Dynamic behaviour of an ion inside or near the
vicinity of a channel is determined by the total force

˚Fig. 1. Test of the PB theory for an electrolyte in a r s3 A pore.
Ž . Ž . Ž .A Average concentrations of cations A and anions B along

q ˚Ž .the channel when there is a test ion Na at zs12.5 A. In BD,
the channel is divided into 32 layers and the average concentration
value in each layer is represented by the histograms. The corre-
sponding PB values are indicated by the solid lines.

acting on it. In the absence of mobile ions, the
repulsive force on an ion from the dielectric bound-
ary leads to a large potential barrier that is high

˚Ž .enough 7 kT for rs3 A to prevent the ion from
entering the pore. In the presence of an ionic atmo-
sphere, the counter charges around the ion are ex-
pected to provide some shielding of the repulsive
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force and thereby reduce the potential barrier. The
PB theory is known to allow a large amount of

w xshielding for an ion even in narrow pores 6 . The
aim of this study is to test, through comparisons with
the more realistic BD simulations, whether this effect
is genuine or a chimera arising from the breakdown
of the mean field approximation in systems with
sizes smaller than the Debye length.

The two critical quantities to be tested are the
amount of screening charge around a test ion and the
resulting force on it compared to that of a single ion
Ž .cs0 . In Fig. 1 we compare the concentration

˚Ž . Ž .profiles for cations A and anions B in a rs3 A
q ˚Ž .pore when there is a test ion Na at zs12.5 A.

The sodium and chloride concentrations obtained
from the PB calculations exhibit a behaviour similar
to that of a bulk situation – there is a net screening
charge near the test ion and within a few Debye
lengths both concentration profiles relax to the reser-
voir value of 0.3 M. The BD simulations, on the
other hand, provide an entirely different picture. Ions
can only access the mouth region of the pore, and the
interior remains completely devoid of both types of
ions. To give a quantitative indication of this differ-
ence, we note that the total screening charge in the

Ž .pore difference of negative and positive charges is
y0.61e in PB and y0.01e in BD. This huge dispar-
ity in screening charges leads to very different re-
sults on the force acting on the test ion as shown in
Fig. 2. The PB results predict nearly an order of
magnitude suppression of the force compared to that

Ž .of single ion cs0 . In contrast, the BD results
follow closely the force on a single ion near the

Ž .mouth region no shielding and deviate from it
somewhat in the interior pointing to some shielding
effect, though it is nowhere near the PB level. In
BD, this shielding in the channel interior arises
because an anion gets trapped in the channel forming
a dipole with the test cation. This is a failure of our
short range ion–ion potential, which though suitable
for purposes of comparison with the PB theory,
actually simulates a weak electrolyte. That is, there
is a relatively deep minimum in the Na-Cl pair
potential at contact that favours the binding of the
two ions. This problem is resolved when the hydra-
tion forces are taken into account by deriving the
ion–pair potentials from the potential of mean force
calculations in molecular dynamics simulations

Ž q .Fig. 2. Force acting on a test ion Na as it is moved along the
˚axis of r s3 A pore. The PB results are shown by the solid line

and BD by the filled circles fitted with a dotted line. The force
Ž .acting on a single ion cs0 is indicated by the dashed line for

reference. The open circles are the results of BD simulations
employing realistic ion–ion potentials derived from molecular
dynamics calculations. Each BD point represents the average of a
160 ns simulation period.

w x20,21 . When such a realistic ion-on potential is
employed in BD simulations, the anomalous looking
behaviour disappears, and the force tracks the single
ion results everywhere as indicated by the open
circles in Fig. 2.

Having established the failure of the PB approach
in narrow channels, we next explore its domain of
validity, that is, how large the pore radius has to be
to get an agreement between the PB and BD results.
For this purpose, we study in Fig. 3 the changes in

Ž .the screening charge in the pore A and the force on
˚ Ž .the test ion at zs12.5 A B as the pore radius is

increased. The total screening charge in PB remains
nearly constant with the increasing radius, the slight
increase being due to approaching bulk conditions
Žnote that the screening charge in the channel is less
than ye because the channel volume is limited to

˚ .zs"17.5 A . In BD, this charge is nearly zero at
˚rs3 A but it steadily rises with r, converging to the

˚PB value at about rs11 A or 2 Debye lengths. A
similar result follows for the force on the ion in Fig.
3B. The force in BD initially coincides with that of a

˚single ion at rs3 A, and with increasing radius, it
gradually converges to the PB values at around
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Ž .Fig. 3. A The net screening charge in the channel, when a cation
˚is held at zs12.5 A, is plotted as a function of the pore radius.

The PB results are shown by the solid line and the BD values by
Ž .the filled circles fitted with the dotted line. B Force on the same

Ž .cation as the pore radius is increased. The PB solid line , BD
Ž .filled circles fitted with a dotted line and single ion results
Ž .dashed line are indicated in the figure. Each BD point represents
the average of a 150 ns simulation period.

2 Debye lengths. This study clearly shows that bio-
logical ion channels, whose radii are typically less

˚than 5 A, are outside the domain of the validity of
the PB theory.

3.2. PNP theory Õersus BD

The failure of PB theory in nanopores is a direct
consequence of its continuum assumptions that leads
to large shielding effects, which are not observed in

realistic simulations. Since the PNP theory is based
on the same continuum assumptions, similar discrep-
ancies are expected to arise in concentration and flux
calculations in PNP when compared to the BD simu-
lations. In Fig. 4 we compare the sodium concentra-
tion profiles obtained from PNP equations with those

˚constructed from BD simulations in a rs3 A pore
Žwith reservoirs as discussed above. The chloride

concentrations are not shown since they are very
.similar to the sodium results. The average concen-

trations are held at 0.5 and 0.1 M in the left and right
reservoirs, respectively, and a 105 mV potential
difference is applied between the reservoir ends.
Concentrations in BD are found by dividing the pore
and reservoirs into layers, counting the number of
ions in each layer at each time step and averaging
over the entire simulation. In PNP the concentrations
are calculated by averaging over all the grid points in
each layer. Apart from entrance effects, the PNP
results change almost linearly across the pore as
would be expected in a bulk electrolyte. Since the
sodium and chloride concentrations in the pore ex-
hibit similar profiles, they more or less cancel each
other providing an almost perfect shielding situation
with practically no induced surface charges to hinder
permeation of ions. In other words, the ion-channel

Fig. 4. Comparison of sodium concentration profiles in PNP with
˚BD in a r s3 A pore in the presence of both a concentration and

a potential gradient. The pore is divided into 16 layers and
reservoirs into 2 layers. The average concentration values in layers

Žare represented by the histograms in BD reservoir values are
.shaded and by the solid line in PNP.
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interactions are completely ignored in PNP, allowing
charge to be transported across the pore as if the

Ž .dielectric boundary did not exist i.e. e s80 .protein

When the ions are treated individually as in BD
simulations, an entirely different picture emerges
Ž .Fig. 4 . The ion concentration drops exponentially
as one moves into the pore and almost vanishes in
the centre. This result is a consequence of the fact
that ions enter the pore singly most of the time and
meet a sharply rising potential barrier created by
induced charges. Ions occasionally probe inside the
pore, but the energy barrier combined with the Boltz-
mann distribution of ion energies, make this increas-
ingly less probable, resulting in the exponential drop
of concentration. Thus, when ions are treated with
integrity there are no shielding effects inside narrow
pores, and the representation of ions as continuous
charge densities as in PNP leads to erroneous results.
The differences between the concentrations found
from PNP and BD diminish as the radius of the pore

˚is increased, converging at rf14 A.
Since the potential and concentration are deter-

mined self consistently in PNP, the errors committed
in concentrations are expected to affect the potential
results and lead to inaccuracies in the ion flux through
the pore. To illustrate the magnitude of these errors
and their dependence on pore size, we plot in Fig.
5A the normalised conductances found from PNP
and BD against the pore radius. In this study a
symmetric solution of 0.3 M and an applied potential
of 105 mV are used. The conductances have been
normalised by the cross sectional area of the pore to
factor out the trivial increase in conductance with
area. The slight reduction in PNP results with in-
creasing r is due to the access resistance varying as
1rr as opposed to the 1rr 2 variation in the cylinder

w xresistance 22 . The PNP conductances are actually
very similar to those found without a dielectric
boundary, confirming the fact that ions permeate the
pore as if there are no ion-channel interactions. The
BD simulations exhibit a dramatically different re-

˚sult: The conductance vanishes in a rs3 A pore
and is suppressed by more than an order of magni-
tude in other narrow pores compared to the PNP
results. Clearly the repulsive boundary forces suc-
cessfully block ionic currents in these narrow pores
as no shielding due to counter ions is possible. As
the channel radius is increased further, the conduc-

Fig. 5. Normalised conductance of Naq and Cly ions in a pore
Ž . Ž .without A and with B fixed charges are plotted against the

pore radius. The BD results are indicated by circles which are are
fitted with a dotted lines, and the PNP results are shown by the
solid lines. Each BD data point is obtained from a 3.6 ms
simulation period.

tance in BD rises, converging towards the PNP
˚results at rf13 A.

Biological ion channels usually have excess
charges in the protein walls, which allow oppositely
charged ions to overcome the boundary forces and
thus enable their permeation while prohibiting the
counter ions from entering the channel. We examine
the effect of such charges by placing a ring of eight
monopoles each with a charge y0.09e at both ends

˚Ž .of the channel in the pore walls zs"12.5 A . This
arrangement of charges almost completely cancels

q ˚the barrier seen by a Na ion entering a rs4 A
pore, and similar charges have been used in applica-

w xtions of PNP 11 . In Fig. 5B, we show the nor-



( )B. Corry et al.rChemical Physics Letters 320 2000 35–41 41

malised conductance as in A except with the inclu-
sion of the fixed charges. The presence of negative
charges in the pore leads to an increase in cation
current and a decrease in anion current in both
theories as expected. However, the discrepancy be-
tween the PNP and BD results remains in narrow
pores especially for the anion current. The fixed
charges spoil the perfect shielding encountered in a
bare pore and thereby lead to some improvement in

Žthe PNP results e.g. faster convergence in sodium
.current , but there is still sufficient shielding left in

PNP to lead to an order of magnitude larger chloride
˚current compared to BD in pores with r-6 A.

4. Conclusions

We have demonstrated unequivocally that
nanopores with radii smaller than two Debye lengths
are outside the domain of validity of the continuum
theories of electrolytes, and therefore, they should
not be used to describe the physics of ion channels.
In fact, shielding effects are almost negligible in
narrow channels, and therefore, use of Poisson’s
equation rather than PB is recommended for poten-
tial and force calculations in ion channels.
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