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The cell membrane, confining some ions and molecules on one side and exchanging others with

the other side, is the ultimate unit of the physiology of life. The delicate task of regulating the

transport of ions across the membrane is carried out by biological nanotubes called ‘ion channels’.

Recently, there have been enormous strides in our understanding of the structure–function

relationships of biological ion channels. The molecular structures of several ion channels have

been determined from crystallographic analysis, including potassium channels, mechanosensitive

channels, a chloride channel, as well as gramicidin channels and porins. It is expected that the

X-ray structures of other ion channels will soon follow these discoveries, ushering in a new era of

ion channel studies in which predicting the function of channels from their atomic structures will

become the main quest. In parallel to these experimental findings, there have been important

advances in computational biophysics. Here we summarize three theoretical approaches that have

been utilized to understand the dynamics of ion permeation across bio-nanotubes, highlighting

their advantages and shortcomings, and briefly describe some of the salient properties of ion

channels uncovered through computational studies.

Introduction

Ionic channels in lipid membranes play a crucial role in the

existence of living organisms. All electrical activities in the

nervous system, including communication between cells and

the influence of hormones and drugs on cell function, are

regulated by the opening and closing of these membrane

proteins. Because these channels are elementary building

blocks of brain function, understanding their mechanisms at

a molecular level is a fundamental problem in biophysics.

Moreover, the elucidation of how single channels work will

ultimately help us find the causes of, and potentially cures for,

a number of neurological and muscular disorders.

In the past few years, the field of ion channel research has

entered into a rapid phase of development. The molecular

structures of the Streptomyces lividans KcsA potassium

channel as well as several other potassium channels, two

mechanosensitive channels, a chloride channel and neuro-

transmitter receptor pores have been determined from crystal-

lographic analysis.1–8 It is expected that crystal structures

of other ion channels will soon follow these discoveries.

Also, as new analytical methods have been developed and
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computational power increases, theoretical methods of study-

ing the permeation of ions through ion channels and the

structural dynamics of the protein have become increasingly

advanced. Now it has become possible to relate the atomic

structure of an ion channel to its function, through the

fundamental laws of physics. The mechanisms underlying

macroscopic observable properties of ion channels are being

addressed by molecular and stochastic dynamics simulations.

Intuitive and hand-waving explanations of the permeation and

selectivity of ions are beginning to be replaced by quantitative

statements based on rigorous physical laws.

Here we give an overview of recent advances in the

biophysics of ion channels, placing a special emphasis on

theoretical approaches that are currently under development.

Computational methods of solving complex biological pro-

blems, such as permeation, selectivity and gating mechanisms

in ion channels, will increasingly play prominent roles as the

speed of computers increases. We give brief summaries of

various methods that have been developed for treating the

time-dependent, nonequilibrium processes that underlie the

flow of currents through biological ion channels. This review

is primarily devoted to three computational approaches—

molecular dynamics, stochastic dynamics and continuum

theories—used to unravel the inner workings of biomolecules.

We give intuitive explanations of the physics underlying each

of the methods, referring to more comprehensive publications

for mathematical details. We discuss the merits and short-

comings of each computational approach and give examples of

their application to ion channels. Detailed accounts of recent

experimental findings on ion channels are not given here; the

reader is referred to the latest edition of Hille9 which provides

an excellent source of information in this regard. The reader is

also referred to recent review articles10–14 for further details of

recent advances in ion channel research.

Theoretical tools for studying ion channels

One important aim of theoretical biophysicists has been to

provide a comprehensive physical description of biological

ion channels. Such a theoretical model, once successfully

formulated, will link channel structure to channel function

through the fundamental processes operating in electrolyte

solutions. It will also concisely summarize the experimental

data, by interlacing all those seemingly unrelated and disparate

observations into a connected whole. The theory will elucidate

the detailed mechanisms of ion permeation: the location of

binding sites in the channel, how fast an ion moves across

the channel, how the protein discriminates between ion types

and where the rate-limiting steps are in conduction. Finally,

it will make predictions that can be confirmed or refuted

experimentally.

The tools of physics that are employed in this endeavor,

from fundamental to phenomenological, are ab initio and

classical molecular dynamics, stochastic dynamics and

continuum theories. In ab initio molecular dynamics, the

interactions between atoms are determined from first

principles electronic structure calculations. Since there are no

free parameters in these calculations, ab initio molecular

dynamics represents the ultimate approach to the modelling of

biomolecular systems. However, because of the extremely

demanding nature of computations, its applications are

generally limited to very small systems at present. As both

computational power and the algorithms for implementing the

quantum mechanical equations improve, we can expect such

calculations to play an important role in ion channel analysis.

In classical molecular dynamics, trajectories of all the atoms in

a system are followed using Newton’s equation of motion.

Simulations are carried out using empirically determined pair-

wise interaction potentials between the atoms. Although it is

possible to model an entire ion channel with classical

molecular dynamics, it is not feasible to simulate the system

long enough to see the permeation of ions across a channel and

to determine its conductance under physiological conditions,

which is the most important channel property that can be

measured experimentally. For that purpose, we utilize

stochastic dynamics, the simplest form of which is Brownian

dynamics, where water molecules that form the bulk of the

system are integrated out and only the ions themselves are

simulated explicitly. The continuum electro-diffusion theory

of the Poisson–Nernst–Planck equations makes one further

simplification known as the mean-field approximation. Here,

ions are treated not as discrete entities but as continuous

charge densities that represent the space-time average of the

microscopic motion of the ions. In Poisson–Nernst–Planck

theory, the flux of an ionic species is described by the Nernst–

Planck equation that combines Ohm’s law with Fick’s law of

diffusion, and the potential at each position is determined from

the solution of Poisson’s equation using the total charge

density in the simulation assembly. Poisson–Nernst–Planck

theory thus incorporates the channel structure and its solution

yields the potential, concentration and flux of ions in the

system in a self-consistent manner.

There is one other approach that has been fruitfully

employed to model biological ion channels, namely, reaction

rate theory.9 In this approach, an ion channel is represented by

a series of ion binding sites separated by barriers, and ions are

assumed to hop from one binding site to another, with the

probability of each hop determined by the height of the energy

barrier. Many useful insights have been gleaned about the

mechanisms of ion permeation using this approach. The merits

and demerits of this theory have been debated extensively in

the literature,15–19 to which the interested reader is referred.

We will not discuss the rate theories further in this review

because the model parameters have no direct physical relation

to the channel structure, whereas the current focus in ion

channel research is on the structure–function relationships.

Poisson–Nernst–Planck theory

Formalism. In the living cell, the concentration of K+ ions is

higher inside than outside and the other way around for Cl2

and Na+ ions. Also, the asymmetrical distribution of ions

across the cell wall gives rise to the membrane potential, which

is typically about 70 mV negative inside with respect to

outside. Thus, there are both potential and concentration

gradients driving the ions through an ion channel. The flux J

across the membrane is described by the Nernst–Planck

equation, also known as the Nernst transport or drift-diffusion
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equation, that combines the diffusion due to a concentration

gradient (Fick’s laws) with the diffusion due to a potential

gradient (Ohm’s law). In symbols,

J~{D +nz
ne

kT
+w

� �
(1)

where n, D, w are, respectively, the number density of ions, the

diffusion coefficient and the electric potential. This last term,

w, results from fixed external charges in the protein, mobile

ions in the electrolyte solution and the membrane potential.

The potential at any point at any time can be determined by

solving Poisson’s equation. For self-consistency, the Nernst

transport equation given in eqn. (1) needs to be solved

simultaneously with Poisson’s equation, and together they

form the so-called Poisson–Nernst–Planck (PNP) equations.

Because of their nonlinear nature, the PNP equations, except

for a few special cases, can only be solved numerically. It

should be noted that the classic Goldman–Hodgkin–Katz

equation9 is, in fact, not a self-consistent solution of the PNP

equation, as it assumes a constant electric field in disagreement

with the solution of Poisson’s equation.

To calculate the ionic current, a channel is placed in a

simulation system by representing it as a rigid dielectric region

and assigning partial charges to the locations of the atoms.

Reservoirs with specified ion concentrations and potentials are

attached at each end of the channel. The simulation system is

then divided into small rectangular grids, and the Poisson–

Nernst–Planck equations are solved at the grid points using a

finite difference algorithm.20,21 The grid size has to be

optimized for efficient running of the program. A smaller grid

size improves the accuracy of the results but also takes a much

longer computational time. The required inputs for the

algorithm are: (i) the coordinates of all the atoms forming

the channel, (ii) the magnitude of electronic charge carried by

each atom, (iii) the dimensions of the reservoirs and ionic

concentrations in each reservoir, (iv) the dielectric constant of

the protein and the solution, (v) the membrane potential,

and (vi) the diffusion coefficients of cations and anions. Once

these parameters are specified, the solutions of the Poisson–

Nernst–Planck equations give the concentration and potential

throughout the system as well as the steady state ionic currents

through the channel.

Limitations of PNP theory. The continuum theories were

originally developed for bulk electrolytes early in the century

and their validity has been firmly established since then.22,23

The Poisson–Boltzmann theory, which is limited to equili-

brium situations, has become an important tool for studying

proteins and membranes, leading to many insights on the key

role played by electrostatic interactions.23 In ion channels, this

theory was initially used to include the effects of ionic

atmosphere on the potential energy profile of an ion in

schematic channels.24–26 In describing nonequilibrium process,

PNP theory provides a premium description of ion transport

problems in many branches of physics and chemistry.27,28 PNP

theory is perhaps the simplest form of nonequilibrium theory

that takes into account the shape of the channel, the

magnitude and location of charged residues in the channel

protein, the applied electric field and asymmetrical ionic

concentrations in the two sides of the channel. In recent years,

the theory has been fruitfully applied in ion channels,

especially by Eisenberg and his colleagues.29,30

There is one severe shortcoming of PNP theory when it is

applied to study a mesoscopic system. In this theory, ions are

not treated as discrete entities but as an average concentration.

Now, let us consider a cylindrical channel with a radius of 3 Å,

spanning a 30 Å thick membrane, whose volume is y103 Å3. If

ions were treated as discrete spherical entities, then at

physiological concentrations, on average either a cation or

anion can be expected in the pore only 10% of the time. To

carry out the PNP calculation, the simulation system needs to

be divided into small cubic cells with a volume of, for example,

1 Å3 and the concentration of anions and cations is computed

in each cell. In the example given, a cubic cell contains y1024

cations and an equal number of anions. In reality there will be

either a whole cation, a whole anion or no ion at any point in

the channel. The presence of both cationic and anionic

fractional charges in each cell introduces errors in the results

obtained with the PNP equations, with the magnitude of the

errors increasing steadily as the radius of the pore decreases

and the chance of having both cations and anions in the

channel diminishes.

The systematic errors inherent in the theory when it is

applied to mesoscopic systems arise predominantly from the

fact that the effects of ‘‘induced surface charges’’ are under-

estimated in PNP theory. When a charged particle in a high

dielectric medium (electrolyte solution) approaches a region of

a low dielectric medium (the protein wall), it induces surface

charges of the same polarity at the protein–water interface.

Water molecules near a cation in an electrolyte solution will

align themselves such that the oxygen atoms, with their partial

negative charges, are positioned nearest to the ion. Because

polar or carbonyl groups on the protein wall cannot rotate as

freely as water molecules, there will be excesses of hydrogen

atoms at the water–protein interface. Viewed from the ion,

these excess hydrogen atoms at the boundary appear as surface

charges, exerting a repulsive force on it. Macroscopically, we

say that a charge q located at a distance d from a slab of

protein induces charge at the surface of the dielectric

boundary. For an idealized infinite plane, the magnitude of

the repulsive force this ion experiences is nearly the same as

when we place another charge q9, on the other side, at a

distance d from the surface, and remove the boundary. This

effect is greatly magnified in a narrow, cylindrical water-filled

pore created by a low dielectric material. Thus, in reality, an

ion attempting to navigate across a narrow conduit formed by

the protein wall encounters an insurmountable energy barrier

owing to induced surface charges. This energy barrier can

usually only be overcome by ions with the aid of charged

residues or dipoles near the pore. The interaction between the

two forces on a permeating ion—the repulsive force resulting

induced surface charges and attractive force induced by fixed

charges—play a crucial role in the permeation dynamics in

ionic channels.

In PNP theory, in contrast, the presence of both positive and

negative fractional charges on any grid point means that the

total charge is zero and no surface charges are induced. Even if

partial charges in the protein create a net charge at any point,
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the surface charge induced by this is always smaller than if the

entire ionic charge of an ion was localized there. These

fractional charges diffuse across the pore, one cubic grid to

another, under the influence of the membrane potential,

unencumbered by any induced surface charges on the protein

boundary. In short, one aspect of the ion–protein interaction,

which is the dominant force in the process of ion permeation

across a narrow pore, is not accounted for in PNP theory.

There is a further problem in applying PNP theory to

biological ion channels, where two or more ions are resident.

In such situations, the ion–ion interactions play an important

role in conduction processes. These Coulombic interactions

taking place inside of the pore cannot be satisfactorily dealt

with in PNP theory. PNP theory also suffers the problems of

using a rigid protein structure and assigning dielectric

constants that are discussed in more detail with reference to

Brownian dynamics simulations.

Application of PNP theory in ion channels. Despite the

caveats to the underlying assumptions, PNP theory has been

fruitfully utilized in studying the mechanisms of ion permea-

tion in biological ion channels. Detailed studies comparing

PNP theory with Brownian dynamics21 and lattice Monte

Carlo simulations31 have revealed that the theory can be

reliably applied to study the permeation process across pores

whose radius is larger than one or two Debye lengths (1 Debye

length # 8 Å for a 150 mM solution). Given the computa-

tional simplicity of the continuum theories compared to other

simulation approaches, it would be desirable to improve the

accuracy of PNP theory when it is applied to biological ion

channels. A possible approach is to include an explicit term in

the formalism to mimic the effect of the surface charges

induced by ions entering the channel. Indeed, there have been

several attempts to improve the accuracy of the theory by

including a specific dielectric self-energy term32–35 with some

degree of success.

Im and Roux36 have examined the properties of ion

permeation across the channel formed by OmpF porin from

Escherichia coli, using both PNP theory and Brownian

dynamics. This wide pore passively transports small molecules

down their concentration gradient. It is weakly cation

selective, and its selectivity depends on the ionic strength of

the solution. The theory is able to capture some of the salient

features of the permeation dynamics, including the electro-

static interactions between ions and the charge distribution of

the channel, the number of ions in the pore, and the current–

voltage–concentration profile. PNP theory overestimates the

current by about 50%. A similar study has been carried out

on the pore formed by staphylococcal a-hemolysin, a toxin

protein that causes urinary tract infections. The channel

conductance calculated from PNP theory is consistently larger

(by 30 to 50%), compared to the experimental value.37 From

these studies, we conclude that PNP theory can be used

to study ion permeation through wide molecular pores,

provided one is prepared to accept a large error in calculated

conductances.

Nonner and Eisenberg38 made an attempt to relate the

observed properties of the calcium channel to its structure with

PNP theory. They modelled the pore as a cylinder connected to

a tapered atrium at each end. To mimic the important cluster

of four glutamate residues found in the real calcium channel,

the central cylinder is assigned a low dielectric material with a

uniform volume density of fixed charge. Applying PNP theory

to this model the calculated currents successfully match the

current–voltage relations, anomalous mole fraction effects and

saturation effects of varied Ca2+ and Na+ concentrations.

Despite the success of this method the proposed mechanism of

selectivity relies on an excess chemical potential of unspecified

physical origin, and some of the parameters used to fit the

channel data appear physically unrealistic. For example, the

calcium diffusion coefficient used in this study to fit the data is

about four orders of magnitude smaller than the microscopic

estimates obtained from molecular dynamics simulations.39

Brownian dynamics

Formalism. Brownian dynamics offers one of the simplest

methods for following the trajectories of interacting ions in a

fluid. The algorithm for Brownian dynamics is conceptually

simple: the motion of the ion with mass m and charge q is

governed by the Langevin equation.

m
dv

dt
~{mcvzFRzqE: (2)

The first two terms on the right-hand side of eqn. (2)

describe the effects of collisions with the surrounding water

molecules. The first term corresponds to an average frictional

force with a friction coefficient given by mc. The second term,

FR, represents the random part of the collisions and rapidly

fluctuates around a zero mean. Finally, E in eqn. (2) denotes

the total electric field at the position of the ion arising from

other ions, fixed charges in the protein, membrane potential

and induced surface charges.

To carry out Brownian dynamics simulations of ion

channels, one needs to specify the boundaries of the system.

This is a relatively simple problem for 1-dimensional Brownian

dynamics simulations,40–42 but requires the addition of

reservoirs to the channel system in the more realistic case

of 3-dimensional Brownian dynamics simulations. Here we

describe a simple stochastic boundary that has been used

successfully in applications of Brownian dynamics simulations

to a number of ion channels.43–47

Fig. 1 shows a schematic illustration of a Brownian

dynamics simulation assembly. An ion channel representing

the potassium channel is placed at the center of the system.

The positions of all the atoms forming the channel are given by

its X-ray structure, and the charge on each atom is assigned.

Then, a large reservoir with a fixed number of K+ (or Na+) and

Cl2 ions is attached at each end of the channel (Fig. 1A). The

membrane potential is imposed by applying a uniform electric

field across the channel (Fig. 1B). This is equivalent to placing

a pair of large plates far away from the channel and applying a

potential difference between them. Since the space between the

electrodes is filled with electrolyte solution, each reservoir is in

iso-potential. That is, the average potential anywhere in the

reservoir is identical to the applied potential at the voltage

plate on that side, and the potential drop occurs almost

entirely across the channel. When an ion strikes the reservoir
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boundary during simulations, it is elastically scattered back

into the reservoir, equivalent to letting an ion enter the

reservoir whenever one leaves the simulation system. Thus the

concentrations of ions in the reservoirs are maintained at

the desired values at all times. During simulations of current

measurements, the chosen concentration values in the

reservoirs are maintained by recycling ions from one side to

the other whenever there is an imbalance due to a conduction

event, mimicking the current flow through a closed circuit.

In Brownian dynamics simulations, the Langevin equation is

solved repeatedly to trace the trajectory of every ion in the

assembly. Snapshots of the simulation system are taken at

short time intervals for millions of time-steps. At each time-

step, usually 2 fs, the forces acting on each ion are calculated

and the Langevin equation is used to determine where it will

move in the next time-step. By repeating this process for a

sufficiently long period of time, usually many microseconds,

one can determine how many ions move across the channel

in a fixed period of simulation time and deduce the single

channel current.

Limitations of Brownian dynamics. In order to trace the

trajectories of about 100 ions interacting with a dielectric

boundary for many microseconds, a period long enough to

deduce the conductance of an ion channel, Brownian dynamics

makes two simplifying assumptions. First, water is not treated

explicitly but as a continuum. In reality, ions collide with

neighbouring water molecules incessantly and the effects of

these collisions are represented as the frictional and random

forces on the right-hand side of eqn. (2). Secondly, the atoms

forming the channel are assumed to be rigid whereas in

reality they will undergo rapid fluctuations. By making these

simplifications it is possible to measure channel conductances

under various conditions and compare these measurements

with experimental findings with only a modest amount of

computational power.

The forces acting on the ions at each step can be calculated

in many ways. Examples exist in which these are fed into the

simulation from the results of phenomenological46 or mole-

cular dynamics simulations,47 an approach that can potentially

avoid the difficulties of assuming a rigid protein. However,

since the water and protein are already represented as

continuous media, the forces are most often calculated by

solving Poisson’s equation. A crucial issue is whether such a

continuum approximation can be justified in a narrow,

biological nanotube. In bulk water, molecules polarize so as

to shield electrostatic interactions by a factor of approximately

1/80. However, given the likely preferential alignment of water

in narrow pores and regions of high charge, this shielding is

likely to be far less effective in an ion channel. Thus, one

should use a lower value of the dielectric constant for the water

in the channel when solving Poisson’s equation. But exactly

what value of the dielectric constant should be used is

unknown. Determining the appropriate values using molecular

dynamics simulations or otherwise would be a useful project.

The validity of treating the channel protein as a static structure

in Brownian dynamics also deserves further investigation. It

should be noted that thermal fluctuations of proteins occur in

the time-scale of femtoseconds, whereas a conduction event

across a typical ionic channel takes place once in 100 ns—

approximately six to seven orders of magnitude slower time-

scale. Thus, it is likely that rapid thermal fluctuations of the

atoms forming the channel are not important for channel

selectivity and conduction. Alterations in the average positions

of the protein atoms caused by the presence of permeating ions

may play a role, and their effects should be examined both

experimentally and by using molecular dynamics simulations.

If found to be important, some of the motions of the protein,

such as the bending of carbonyl groups, can readily be

incorporated in Brownian dynamics modelling of ion channels.

Finally, size-dependent selectivity among ions with the same

valence cannot be easily understood within the Brownian

dynamics framework, and one has to appeal to molecular

dynamics or semi-microscopic Monte Carlo simulations48 for

that purpose.

Application of Brownian dynamics in ion channels. The ability

to compute current flow across ion channels confers a distinct

advantage to Brownian dynamics compared to other simula-

tion techniques. Thus an obvious application of Brownian

dynamics is the calculation of current–voltage and conduc-

tance–concentration curves, which can be directly compared to

the physiological measurements to assess the reliability and

predictive power of the method. In addition to simple counting

of ions crossing the channel, one can carry out a trajectory

analysis of ions in the system to determine their average

concentrations and the steps involved in conduction. This is

useful in finding the binding sites and the average number

of ions in the channel, both of which are experimentally

observable quantities. It is also possible to study the

mechanisms of blocking of channels by larger molecules or

other ion species.

Fig. 1 Simulation assembly for Brownian dynamics. (A) The shape of

the KcsA channel is modified such that the minimal radius of the

intracellular gate (on the left hand side) is 3 Å. The ribbons represent

the outer helices, pore helices and inner helices. A reservoir containing

a fixed number of anions (red) and cations (blue) is attached at each

end of the KcsA potassium channel. The charge on each atom forming

the channel is assigned. (B) A uniform electric field is applied across

the channel to mimic the membrane potential. This is equivalent to

placing two voltage plates at a distance and applying a potential (¡V)

on each plate.
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We summarize two examples of how Brownian dynamics

has been applied recently in elucidating the dynamics of ion

permeation in biological channels. Using the experimentally

determined potassium channel structure as a template, as

shown in Fig. 2A, Chung et al.49 proposed a plausible

explanation for the diversity of potassium channels seen in

nature. There are many different types of potassium channels,

which differ widely in their conductances and gating

characteristics while having a similar primary structure.

Conductance levels of various types of potassium channels

range from 4 to 270 pS (1 pS equals 0.1 pA of current across

the channel with the driving force of 100 mV). Despite this

diversity, they all share the common feature of being highly

selective to potassium ions and display broadly similar

selectivity sequences for monovalent cations. To understand

this feature, Chung et al.49 investigated the possible structural

differences that could give rise to different potassium channels.

They systematically change the radius of the intracellular pore

entrance, leaving the dimensions of the selectivity filter and

cavity unaltered. As the intrapore radius is increased from 2 to

5 Å, the channel conductance changes from 0.7 to 197 pS (0.17

to 48 pA). In Fig. 2B, the simulated current across the model

ion channel determined from Brownian dynamics is plotted

against the radius of the intrapore gate. By examining the

energy profiles and the probabilities of ion occupancies in

various segments of the channel, they deduce the rate-limiting

step for conduction in the potassium channels. Ion distribu-

tions revealed that the selectivity filter was occupied by two K+

ions most of the time. A conduction event was triggered when

a third ion climbed over the energy barrier located between the

cavity and the intracellular mouth and moved toward the

selectivity filter. Potential energy profiles encountered by an

ion traversing along the central axis of the channel when there

are two ions in or near the selectivity filter are shown for the

channels with radii 2 Å (solid line in Fig. 2C), 3 Å (long-dashed

line) and 4 Å (dashed line). Ions need to climb over the energy

barrier, whose height is denoted as DU, to move across the

channel. This barrier is the rate-limiting step in the permeation

process: as its height increases with a decreasing intrapore

radius, the channel conductance drops exponentially.

Brownian dynamics simulations were similarly applied to

elucidate the dynamics of ion permeation across ClC-type

channels.50,51 The ClC family of Cl2 channels, present in the

cell membranes of every living organism, perform diverse roles,

such as the control of cellular excitability, acidification

of intracellular vesicles, and cell volume regulation.52–54 The

X-ray structures of two prokaryotic ClC proteins were deter-

mined by Dutzler et al.3,4 Corry et al.51 created an open-state

homology model of a eukaryotic ClC channel, ClC-0, using the

crystal structure of the prokaryotic protein as a basis, as shown

in Fig. 3A. This channel, from Torpedo electroplax, was first

discovered by Miller55 and is one of the most thoroughly

studied channels of this family. As illustrated in Fig. 3A, the

ionic pathway of ClC-0 takes a tortuous course through the

protein, unlike that of the potassium channel, which is straight

and perpendicular to the membrane surface. The channel is

quite narrow, having a minimum radius of 2.5 Å near the

center, but opens up quite rapidly at each end. The distance

from one end of the pore to the other is 55 Å and it is lined

with many charged and polar amino acid residues. The pore

is lined with four acidic residues and ten basic residues.

Their locations along the ion conducting pathway are shown

in Fig. 3B.

The conduction properties of the model shown in Fig. 3B

were examined with Brownian dynamics simulations. A

current–voltage relationship obtained with symmetrical solu-

tions of 150 mM in both reservoirs is shown in Fig. 3C. The

relationship is linear, with a conductance of 11.3 ¡ 0.5 pS

that agrees well with experimental measurements reported by

Miller55 (superimposed open circles). The current–concentra-

tion relationship obtained from the homology model using

Brownian dynamics (filled circles) is also accord with the

experimental observations (open circles) as shown in Fig. 3D.

Fig. 2 Brownian dynamics simulations of model potassium channels.

(A) Solid line shows the outline of a simplified model channel. A three

dimensional channel shape is obtained by rotating the curves by 180u.
The positions of dipoles on the channel wall are indicated with filled

circles (carbonyl and hydroxyl oxygen atoms), filled square (mouth

dipoles) and open square (helix dipoles). A set of such channels with

varying radii of the intracellular gate is constructed for Brownian

dynamics simulations. (B) The outward current is plotted against the

radius of the intracellular aspect of the channel entrance. The applied

field to obtain the current is 2 6 107 V/m. (C) The energy profiles

obtained from the channels with the radii of 2 (solid line), 3 (long-

dashed line) and 4 Å (dashed line) are superimposed. The curves show

the barrier DU encountered by an ion attempting to move towards the

selectivity filter. The height of the barrier DU an ion needs to surmount

to traverse the channel decreases progressively as the radius of the

intrapore gate is widened.
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Molecular dynamics

Formalism. Conceptually, molecular dynamics simulations

are quite simple. In these simulations, we follow the

trajectories of N particles interacting via a many-body

potential U(r1, r2, …, rN) using Newton’s equation of motion:

mi
d2ri

dt2
~{+iU r1, � � � ,rNð Þ i~1, � � � ,N (3)

where mi and ri denote the mass and position of the ith

particle, and the force on it is given by the gradient of the

potential U. Unlike in Brownian dynamics simulations, in

which only the ions are simulated explicitly, in molecular

dynamics all the atoms (ions, water, protein and lipid) can

be included.

At every time step, the potential function is recalculated

using the new positions of the particles to determine their

positions a short time later, and this process is iterated for a

large number of steps until a statistically satisfactory data set is

generated. The trajectory data thus generated is stored at

certain intervals, which can later be analyzed to determine the

structural and dynamical properties of the simulation assem-

bly. Quantities such as free energy, mean square displacement,

radial distribution and other correlation functions can be

calculated from an ensemble average over several simulations

or parts of a long simulation. Ion channel simulations will

typically include tens to hundreds of thousands of atoms

and the trajectories of all atoms can be followed as they move

in real time typically for up to y100 ns, although longer

simulations have also been reported. Because all the atoms in

the system (including water molecules) are represented

explicitly in molecular dynamics, there are no frictional or

random forces to deal with as in stochastic dynamics. Also, no

assumptions are required about the nature of the solvent, and

there is no need to choose dielectric values or boundaries as all

atoms are present, and in principle all interactions (water–ions,

water–protein, water–lipid, lipid–protein) are incorporated.

This method automatically includes the dynamics of the ion

channel protein itself as well as any dynamic effects of the

lipids or solvent.

The success of molecular dynamics simulations in capturing

the dynamics of the real system hinges critically on how

accurately the potential functions or force fields are selected.

In the past two decades, numerous studies have been carried

out to develop force fields for biomolecular applications, and

these are incorporated into several user-friendly computer

programs for simulation of biomolecular systems.56–59 In these

programs, the non-bonded interactions between atoms are

represented by Coulomb and Lennard-Jones potentials.

Pairwise interactions are used for all the atoms in the system,

Fig. 3 Brownian dynamics simulations of an open-state ClC channel,

ClC-0. (A) The open state of the channel is based on the crystal

structure of the bacterial ClC protein. The front half of the atoms is

removed to reveal the ion-conducting path across the protein. (B) The

water-filled pore through which Cl2 ions move is lined with both

acidic and basic residues. The channel is normally occupied by two Cl2

ions, shown here in green. (C) The current–voltage relationship

obtained with symmetrical solutions of 150 mM, using Brownian

dynamics simulations (filled circles) is compared with the experimental

measurements obtained by Miller,55 shown in open circles. (D) The

current–concentration relationship obtained with symmetrical solu-

tions of varying concentrations of NaCl in the reservoirs under

an applied potential of 280 mV (filled circles) is fitted with the

Michaelis–Menten equation. The experimental measurements obtained

by Tsung-Yu Chen (personal communication) are shown in open

circles. The half-saturation points determined from the fitted curves

are 163 ¡ 51 mM for the simulated data and 136 ¡ 8 mM for the

experimental data.
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and the potential parameters are determined empirically from

spectroscopic data and fits to bulk properties. Most atoms in

the system are also covalently bonded to other atoms, and

these bonds are represented in molecular dynamics by a set of

force parameters that describe the stretching of a bond

between two atoms, the bending of a bond angle formed by

three atoms, and the torsion of a dihedral angle between the

123 and 234 planes in four atoms.

Limitations of molecular dynamics. There are two major

limitations of molecular dynamics that prevent it from

becoming the model of choice in studying ion conduction in

biological channels. First, calculating all the interactions

between all the atoms in a system is a slow process. Even

with the most powerful computers currently available,

molecular dynamics simulations of an assembly that includes

an ion channel, lipid membrane, ions and water, can be run

for only about one hundred nanoseconds. On the other hand,

it requires many hundreds of microseconds of simulation

to determine the conductance of a channel. Also, as the

conformational changes of channel proteins are taking place

typically in a millisecond timescale, molecular dynamics

cannot be used to follow the dynamics of proteins. Although

the calculation of the quantities such as the potential of mean

force provides a great deal of information, the most desirable

outcome of a modelling technique is to calculate the currents

passing through a channel and make predictions that can be

directly compared to experimental observations. Without such

comparisons, we have no way of knowing whether the result

of a molecular dynamics simulation genuinely reflects the

physical reality or is an artifact of the method. This practical

limitation of molecular dynamics may be solved in a variety of

ways. It could be overcome if the speed of advanced computers

can be increased by three or four orders of magnitude or if

simulations can be carried out by using a large bank of parallel

processors. An alternative approach to alleviate this problem is

to devise new algorithms to speed up the simulation. One such

proposed scheme makes use of a ‘‘multigranular modelling

approach’’ in which different groups of molecules are

represented at different levels of detail, employing multiple

time-steps. In this way, 5- to 30-fold increases of simulation

time have been realized.60 The use of non-equilibrium

conditions, such as the application of a very large membrane

potential61 or additional forces on the ions,62 has allowed

permeation events to be monitored, albeit it in non-physio-

logical conditions. Jordan and his colleagues48,63 proposed a

hybrid of microscopic–mesoscopic methods to circumvent the

limitations of molecular dyanmics and applied it successfully

to the gramicidine pore and the KcsA potassium channel. A

final alternative to relate molecular simulations to channel

currents is to use the multi-ion potential of mean force

determined in molecular dynamics as the means of calculating

the force on ions in Brownian dynamics simulations of ion

conductance.46,64

The second limitation of this technique is the inadequacy of

the empirical force fields employed in the molecular dynamics

simulation packages currently available for describing ion

permeation. The electrons around atoms are not inert but

move according to quantum mechanical laws. When an atom

is placed in an electric field, the position of the electron cloud

shifts with respect to the nucleus. This induces a dipole, which

in turn creates an electric field of its own and further polarizes

the surrounding atoms. It is computationally expensive to

compute all these polarization effects, including dispersion

forces (which arises from quantum fluctuations that induce

correlations between the electrons of two atoms). Thus,

polarization effects implemented in most programs are

incorporated implicitly by invoking a mean field approxima-

tion. That is, an average induced dipole term is added to the

monomer value such that the results of simulations reproduce

the bulk property of a system. For example, the dipole

moment of water is taken as 2.3 Debye in most molecular

dynamics programs, which is larger than the experimental

value of 1.85 Debye. These crude approximations of the

polarization effects may introduce large errors in the results of

simulations when the technique is applied to a mesoscopic

system, such as ion channels, for which the parameters have

not been empirically fitted. Thus, it is desirable to develop

polarizable force fields that could provide more realistic

pictures of quantities such as the free-energy profiles of an

ion in a channel.

Ideally, the parameters of force fields to be used in mole-

cular dynamics should be derived from electronic structure

calculations using ab initio molecular dynamics methods,

rather than determining them empirically from fits to data.

Ab initio molecular dynamics has already been applied in

condensed matter physics and in studies of water, electrolytes

and bio-molecules. Density functional theory has been adapted

to calculate the potentials between atoms on the fly.65,66

Examples of the use of static ab initio methods in examining

ion binding in potassium channels67 have been reported and

the development of linear scaling techniques mean that these

methods will undoubtedly be applied for modelling of ion

channels in the near future.

Application of molecular dynamics in ion channels. Despite

the limitations listed in the previous section, molecular

dynamics simulations carried out over the past two decades

have revealed many important aspects of ion permeation

across biological channels. Among the important facts

revealed by these simulations are: (i) how the properties of

water and ions change when they enter narrow channels from

bulk;68 (ii) the way small molecules and toxins interact with ion

channels;69 (iii) how the channel proteins are affected by their

surroundings, such as the lipid bilayer;70,71 and (iv) what

numerical values of the parameters are to be used for coarse-

grained simulation techniques, such as Poisson–Nernst–Planck

theory and Brownian dynamics.39 Because the calculation of

conductance is computationally intractable at present, mole-

cular dynamics has been used extensively to deriving free-

energy profiles and other quantities related to permeation.72,73

The availability of an X-ray structure of the KscA

potassium channel prompted many groups to investigate ion

permeation through it using molecular dynamics. Largely

because it was the first biological ion channel to have its

tertiary structure determined, it has been a prime target for

simulation and modelling studies and is the only example we

will discuss here. These studies have examined the mechanisms
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underlying the permeation of ions across the channel, the basis

of ion selectivity, and the conformational changes that occur in

the KcsA protein when the channel opens. Such simulations

reveal that the potassium channel is usually occupied by three

K+ ions, two in the selectivity filter and one in the cavity, as

observed in X-ray diffraction experiments.1,74,75 There is also

some evidence that the K+ ion in the cavity approaching

the selectivity filter triggers a conduction event, and permea-

tion across the filter occurs through the recycling of ions as

2 K+ A 3 K+ A 2 K+.76,77 Potential of mean force calculations

with multiple K+ ions in the selectivity filter indicate that

the free energy barriers between the bindings sites are about 3

to 4 kT.77 Thus, Coulomb repulsion exerted by a third K+ ion

enables the resident ion to climb over this energy barrier and

conduction to take place.

The crystal radius of sodium is 0.99 Å, whereas that of

potassium is 1.33 Å. Yet, all potassium channels effectively

exclude Na+ ions passing through the pore. The key

differences between potassium and sodium appear to be only

a small difference in radius and in polarizability. On the basis

of the X-ray structure of the KcsA potassium channel, it has

been suggested that a ‘rigid’ selectivity filter provides stronger

cation–oxygen interactions for K+ ions than for Na+ ions.

Thus, the energetic cost of dehydrating K+ ions is repaid by

ion–protein interactions, while ion–protein interactions are

too weak to balance the cost of dehydrating Na+ ions.

Several simulations have tried to address this question through

free-energy perturbation calculations, where a K+ ion is

alchemically transformed into a Na+ ion. The barrier Na+

encounters in crossing the selectivity filter is estimated to be

11 kT,78 8 kT79 or 5 kT,80 in rough agreement with the

experimental value of 9 kT extracted from the K+/Na+

selectivity ratio of 104.

The conventional view that the carbonyl oxygen atoms

lining the pore are held rigidly in place has been questioned by

several molecular dynamics studies. Domene and Sansom81

placed different cations (Na+, K+, Rb+, Cs+) in the selectivity

filter and observed its shape. Significant flexibility of the filter

is observed, as well as concerted motions of ions and water. In

particular, pronounced distortions of the filter occur when no

ions are present, which is also found from crystallographic

studies at low salt concentration.82 The two most readily

permeant ions, K+ and Rb+, are similar in their interactions

with the selectivity filter, while Na+ ions tend to distort the

filter by binding to a ring of four carbonyl oxygens. The

presence of a larger Cs+ ion results in a small degree of

expansion of the filter relative to the X-ray structure and these

ions show some tendency to bind within the gate region of the

channel, near the cavity. Although these results are very

interesting, it should be kept in mind that ion parameters are

difficult to obtain with high accuracy and such differences may

result from the choice of force field parameters. Further

studies in this area would certainly be worthwhile. More

recently, Noskov et al.83 suggested that selectivity may result

from the electrostatic interactions between various atoms and

the permeating ion. Noting that the protein forming the

potassium channel undergoes structural fluctuations of about

0.75 Å, far greater than the difference of the atomic radii of

Na+ and K+ ions, they suggest that the tight coordination of a

K+ ion by 8 carbonyl oxygens lining the filter cannot be the

underlying mechanism for selectivity. In this context, it should

be emphasized once again that that the characteristic oscilla-

tion periods of atomic motions are of the order of 10 fs (bond

stretch) to 30 fs (dihedral motion),84 whereas a conduction

event across the potassium channel takes place on average

once every 100 ns. Thus, these atomic motions take place at the

rate of six to seven orders of magnitude faster than a

conduction event. A permeating ion is therefore likely to see

the average position of the atoms forming the conduit. If so,

root-mean-square atomic fluctuations may have no relevance

to the selectivity or conductivity of the channel, but structural

flexibility that alters the average positions of the protein atoms

may be important.

Concluding remarks

We have briefly summarized three computational tools—

Poisson–Nernst–Planck theory, Brownian dynamics and

molecular dynamics—that will play increasingly prominent

roles in understanding how biological ion channel work. Each

of these approaches has its strengths and limitations, and

involves a degree of approximation. The main defects of PNP

theory are errors stemming from the mean-field assumption. In

particular, it ignores the effects of induced surface charges

created as a charged particle in electrolyte solutions

approaches the protein boundary. The magnitude of the errors

introduced by the mean-field approximation become large

when the theory is applied to narrow ionic channels. By

incorporating a term in the PNP equations to account for the

barrier created by induced surface charges, the magnitude of

the errors can be reduced somewhat.34 However, doing this

removes much of the simplicity of the PNP theory, one of its

main advantages over the other approaches, and also it is still

hard to know the accuracy of the results without comparison

to a more detailed model. One of the main caveats to the

application of Brownian dynamics to biological ion channels

is the use of Poisson’s equation to estimate the forces

encountered by permeant ions. The issue here is whether one

can legitimately employ macroscopic electrostatics in regions

that are not much larger than the diameters of the water

molecules and ions. In the narrow constricted region of the

channel, such as in the selectivity filter of the potassium

channel, the representation of the channel contents as a

continuous medium is a poor approximation. Nevertheless, the

results derived from Brownian dynamics simulations accu-

rately replicate a wide variety of experimental observations

when a relatively high effective dielectric constant (usually 60)

is assigned to the water-filled pore. The greatest limitations of

molecular dynamics is the computational power required that

limits the possible simulation times. While the calculation of

free energy profiles provides useful information on ion

permeation, it is not a substitute for a direct estimation of

conductance from simulations. Thus, virtually no predictions

derived from molecular dynamics simulations can be directly

compared with experimental data. If no such comparisons can

be made, there can only be a limited interaction between

experimenters and theoreticians. With the current doubling

of computer speeds every two years, this computational
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limitation will eventually be overcome. Then, the force fields

employed in molecular dynamics simulations may need to be

improved to include polarization effects, perhaps using ab initio

molecular dynamics as a guide.

All three theoretical approaches are useful in elucidating the

mechanisms underlying selectivity and permeation of ions

across biological nanotubes. For ion channels with large pore

radii, such as mechano-sensitive channels, PNP theory can be

fruitfully utilized. Also, if one is interested in simply obtaining

order-of-magnitude estimates of conductances of various

model channels, this simple theory will provide the answers

with little computational cost. To study the mechanisms

underlying the selectivity sequences of monovalent ions or to

determine the precise conformational changes of the protein

when a channel undergoes the transition from the closed to the

open state, one has to rely on molecular dynamics simulations.

Thus far, a combined use of molecular and Brownian

dynamics has proved to be well suited for studying structure-

function relationships in ion channels. Brownian dynamics

enables the calculation of conductance properties while

molecular dynamics can provide input and justification for

the parameters of the stochastic simulations as well as

explaining finer details such as size-based selectivity. Now

and in the near future, as we attempt to understand membrane

channels in terms of rigorous molecular physics, there will be

an increasing interplay between experiment and theory, the

former providing hints and clues for building and refining

models and the latter making testable predictions.
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47 S. Bernéche and B. Roux, Proc. Natl. Acad. Sci. USA, 2003, 100,

8644–8648.
48 S. Garofoli and P. C. Jordan, Biophys. J., 2003, 84, 2814–2830.
49 S. H. Chung, T. W. Allen and S. Kuyucak, Biophys. J., 2002, 83,

263–277.
50 B. Corry, M. O’Mara and S. H. Chung, Chem. Phys. Lett., 2004,

386, 233–238.
51 B. Corry, M. O’Mara and S. H. Chung, Biophys. J., 2004, 86,

846–860.
52 T. J. Jentsch, T. Friedrich, A. Schriever and H. Yamada, Pflügers
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